
SVA Based Functional Verification Coverage

• A ‘what if’ window allows users to create
or modify assertions
• Users can re-run any assertion evalua-
tion an unlimited number of times without
re-simulating
• Assertion Coverage metrics provide full
Functional Verification Coverage
• Test setup and hold times in gate designs
using analog simulations result data

 Veritools Data Sheet

VeritoolsVerifyer
 Standalone SystemVerilog Assertion Evaluation, Analysis,

 and Coverage

VeritoolsVerifyer with SVAssertion Analyzer includes these important features:

459 Hamilton Ave., Suite 200, Palo Alto, CA 94301; phone: (650) 462-5590 fax: (650) 462-5593; email: inquiry@veritools.com

Download VeritoolsVerifyer from our web site: www.veritools.com

SVA Based Functional Verification

• Manage, design, and evaluate SVAsser-
tions without re-simulating DUT
• SystemVerilog Assertions and results
are shown in design hierarchy
• View timing results for SVAssertion
evaluations
 • View signal components for any SVAs-
sertion evaluation
 • View timing result for any SVA execu-
tion thread along with local variables

“What If”’ Capability; VeritoolsVerifyer provides a “What if”
capability to allow the user to find and fix the conditions that may
have prevented an assertion from going to a assertion pass condi-
tion. If any assertion fails, the user can bring up the assertion exe-
cution that fialed, modify the assertion and re-evaluating this
assertion. The user can use this window to split apart assertion
expressions into several smaller assertion expressions to find out
exactly what part of the assertion expression has passed and which
part of the complete assertion expression is failing. This process
can be repeated an unlimited number of times to quickly find
exactly prevented the assertion from reaching the assertion pass
condition and to find the correct SVAssertion code that will pass.
The assertion expression evaluator in the “What If” window can
generally re-evaluate any modified assertions in seconds, even
while using very large simulation result files.

In a simulator only based approach users have to;
Run simulation and find the assertions that are failing
Load the source code for the failing assertion into an editor
Edit the failing assertion code
Commit the new code and re-compile the source code
Rerun the design and assertion simulation
Reload the simulation results into an assertion analysis tool
Re-verify that the new assertion is or is not working correctly
Repeat this process if the assertion is still not working

Using the “What if” capability users can;
Run assertion evaluation, find the failing assertions, Press Edit
Edit the SVAssertion code for any assertion that failed
Press “Test Edited Assertion”, result showing whether assertion is
working displays on waveform window, in most cases in seconds.
Repeat from “Edit the SVAssertion”, as many times as necessary.

Users can modify, re-evaluate and re-verify that the new SVAsser-
tion is working or not in most cases in seconds. Using only a simu-
lator-only based approach to verify SystemVerilog Assertion code,
each iteration could take as much as several hours. A new simula-
tion run is only required, when using the VeritoolsVerifyer when a
change is required to the user's design or test vectors.

SVAssertions and Gate Design: The exact same SVAssertions
that are run against the RTL design can be also be used to verify
the gate design that was synthesized from this RTL code. Users
only have to insure their SVAssertions take into account the actual
clock timing seen at the clock input of each FF. Veritools provides
an entire set of tools to allow users to use analog simulation results
with extracted net lists to achieve the highest possible accuracy in
the final SVAssertion analysis of FF set-up and hold timing.

Functional Verification Coverage
SVAssertion Coverage with complete assertion metrics: The
VeritoolsVerifyer includes SVAssertion coverage so users and
design managers can see the overall coverage of the SVAssertions
in their functional verification process. Results are accumulated
and tabulated so users can see a percentage of functional coverage
for any part of their design, and can quickly go to any part of the
design where additional assertion tests may be needed.

Verify your design in a fraction of the time!

No other tools have these features at any price.

All of the features of VeritoolsVerifyer are available in both interactive mode, or in batch mode for use in virtual simulation, without using a simulator license.
These tools support Verilog, Verilog 2001, VHDL, SystemC and SystemVerilog, and in addition supports standalone SystemVerilog assertion evaluations
including a complete suite of tools to do assertion metrics for coverage analysis. Veritools products are available on Linux systems, 32- and 64-bit Sun _Solaris,
HP700/800, IBM AIX, and Windows 98/NT/2000/XP. Copyright 2006, All Rights Reserved, Veritools, Inc. Trademarks are owned by their respective

Functional Verification

In today's ASIC design environment, the percentage of suc-
cessful ASIC tape outs has been declining over the past sev-
eral years, in part due to the fact that ASIC designs have
been getting progressively more complex and hence increas-
ingly more difficult to verify and test.

To increase the success rate of new ASIC designs, companies
are starting to incorporate SystemVerilog assertions into their
design verification process. Many of today's designs have over
30,000 lines of assertion code, the next generation of designs
are expected to have over 100,000 lines of assertion code, which
will be required just to insure the design under test is working.
Design managers and design engineers find that it is getting
more difficult to efficiently manage such large amounts of
assertion code and to see what the assertion coverage really is. It
is even difficult to verify that the assertions are actually testing
what design engineers had intended these assertions to test in
the first place.

The VeritoolsVerifyer, a stand alone SystemVerilog Asser-
tion analyzer, allows designers to both manage their assertion
code, and to quickly verify that the assertions do what the
designer had intended them to do.

Manage SVAssertion code; The user’s SVAssertion tests and
results of evaluations are displayed right in the user’s design
hierarchy.

Stand alone SystemVerilog Assertion evaluation; The evalu-
ation of the SVAssertions is done directly from a result file gen-
erated from a Verilog, VHDL or SystemVerilog simulation. The
evaluation of the user’s SVAssertions can done if the SVA’s are
linked to the users design via the “bind” SV function or are
embedded into the user’s design. The user’s SVAssertions can
be evaluated an unlimited number of times without requiring
any re-simulation. SVAssertions evaluation results are color
coded and displayed right in the user’s design hierarchy. Yellow
indicates the assertion result was vacuously true only, Green,
the assertion result was vacuously true or had only evaluated to
a “pass”, and Red indicates the assertion evaluation failed at
least once during evaluation.
Graphical Waveform Result Display; By selecting any asser-
tion, users can display the “assertion results” in the waveform
window, and see exactly which assertions reached a pass or fail
condition. Assertion result times can then be selected for nay
assertion evaluation to display the SVAssertion timing for this
SVAssertion evaluation. Users can display on the graphical
waveform window the signals that were used in the evaluation
for this assertion and can even located and display every inde-
pendent execution thread for any assertion, along with the local
variables that apply to this thread.to find out why any particular
evaluation failed. Normally evaluating SVAssertions along with
the design result in a significant slow down in simulator perfor-
mance because SVA assertions having one important dimension
not in Verilog or VHDL. These languages have declaration and
instantiation, SVAssertions have declaration, instantiation.and
execution. Each and every SVAssertion can and sometimes will
execute each and every single clock cycle even if it is already
being executed. Because this tool uses the same simulation
result files that are generated during normal design simulations,
there is never any negative impact at all on simulation run times
when adding SVAssertions to the user’s verification process.

